mercredi 2 avril 2008

Méthode de fabrication (disque compact)

Méthode de fabrication

La fabrication industrielle d’un CD se fait suivant différentes étapes :

  1. Le prématriçage correspond à la transcription des informations du client sur une bande à 9 pistes, en passant par une phase de correction d’erreurs, et de formatage des fichiers au format ISO 9660 dans le cas d’un CD-ROM.
    Le but essentiel du prématriçage est le calcul du Code Détecteur et du Code Correcteur. Ces codes sont contenus sur 288 octets accolés à 2 Ko d’informations plus des informations de synchronisation et d’en-tête. Ce procédé permet de prévenir les erreurs de transmission.
    Une fois cette étape passée, il n’y a plus aucune modification des données à inscrire.
  2. La création du disque matrice, appelé aussi matrice de verre, consiste au marquage des données sur un disque de verre.
    Le point de départ du disque matrice est une vitre fortement polie, dont les caractéristiques de surface ressemblent de près à un miroir astronomique. Cette plaque de verre est couverte d’un substrat sensible à la lumière, appelé résine photosensible. La couverture de la plaque par un procédé de rotation (dépôt par centrifugation) assure une couche absolument plane et uniforme de 120 nm d’épaisseur. C’est l’épaisseur de cette couche qui détermine la profondeur des creux.
    L’inscription des données est effectuée grâce à un appareil émettant un rayon laser qui est activé et désactivé au rythme des informations. Le rayon ainsi modulé marque la couche photosensible de la plaque de verre.
    Le disque de verre est ensuite placé dans un bain de développement. Les emplacements altérés par le rayon sont lavés faisant ainsi apparaître les premiers creux.
    Après séchage du disque matrice suit la vaporisation sous vide d’une couche argentée de 100 nm, appelée galvanoplastie. À ce stade, le disque matrice est lisible par un lecteur spécial qui permet de contrôler la qualité de l’enregistrement.
  3. La galvanisation est une opération qui crée la matrice de production à partir de la matrice de verre.
    La matrice de verre est plongée dans un bain de galvanisation comportant une anode de nickel. La couche argentée de la matrice de verre est transformée en cathode. Le courant ainsi créé entraîne un déplacement des ions de nickel sur l’anode, couvrant peu à peu la plaque de verre d’une couche de nickel.
    La séparation de la couche de nickel de son support de verre amène la destruction de ce dernier. Si à ce stade de l’opération les normes de qualité ne sont pas respectées, tout le processus précédent est à refaire.
    La couche de nickel, copie tirée directement de la matrice de verre, est nommée original ou copie père : c’est une reproduction en négatif de l’original.
    Pour éviter une perte de cet original, on en fait une copie appelée copie mère, qui sert ensuite à tirer les sous-matrices.
    Les sous-matrices sont, comme l’original, des négatifs et servent à imprimer les données sur les disques en plastique pendant leur fabrication. Elles sont perforées au centre et polies à l’endos. La qualité du dos de la matrice a une grande influence sur le bruit qui sera perçu par les photorécepteurs des lecteurs de CD-ROM. La rugosité moyenne maximale est de 600 nm. Comme l’air, la propreté de l’eau est importante pour la qualité finale du produit.
  4. La fabrication en série des disques compacts peut se faire par moulage injection ou par pression. Ce premier principe consiste en l’injection du polycarbonate liquide dans la matrice ; le second système, a pour principe l’impression des cuvettes dans le disque encore chaud par pressage.
    Le polycarbonate a été retenu dans la conception des CD pour ses propriétés telles que la pureté optique, la transparence et un indice de réfraction constant.
    Les disques ainsi obtenus voient leur face marquée par les données, puis métallisée par une couche d’aluminium de 40 à 50 nm. Pour ce faire, l’aluminium est atomisé dans un espace sous vide, et se dépose lentement sur le disque. L’atomisation est obtenue par réchauffement, ou à froid, par un procédé de pulvérisation cathodique.
    La couche d’aluminium ainsi déposée est enfin protégée par l’application d’un vernis protecteur, à l’aide du procédé de dépôt par centrifugation. Le vernis devient ainsi une couche uniforme de 10 µm d’épaisseur.
    Avant conditionnement, une étiquette est imprimée sur le vernis par le principe de la sérigraphie.
  • Un CD ainsi produit assure une longévité de l’ordre du siècle si toutefois il est bien traité par son propriétaire et ses successeurs. En comparaison, un CD-R a une durée de vie de l’ordre de la décennie, du fait de sa sensibilité aux rayons lumineux.

Format audio

Le format de données, connu sous le nom de standard Red Book, a été dressé par Dutch Electronics du groupe Philips qui possède les droits du CDDA et du logo qui apparaît sur les disques. En termes techniques, il s’agit d’une piste stéréo encodée en PCM à une résolution de 16 bits (linéaire en amplitude, sans compression logarithmique des amplitudes hautes) avec une fréquence d’échantillonnage de 44,1 kHz.

Les échantillons sont ensuite regroupés en frame, chaque frame comporte 6 échantillons stéréo (6×2×16 bits = 192 bits soit 24 octets), plus 8 octets de correction d’erreur et un 1 octet de subcode, soit un total de 33 octets par frame. Le code correcteur est ajouté pour permettre la lecture d’un disque rayé dans les limites du raisonnable, il s’agit de 2 code de Reed-Solomon à la suite et d’un entrelacement des données effectué entre les 2 codages. L’octet subcode est utilisé pour former 8 canaux de contrôle (chaque canal ayant un débit binaire de 7,35 kbps), dans le CD standard seul les 2 premiers canaux sont utilisés et servent pour indiquer les débuts de pistes, le temps, la pré-accentuation, l’autorisation de copie, le nombre de canaux (stéréo ou quadriphonie, mais bien que le bit d’indication de quadriphonie existe dans la norme, la façon dont ces canaux supplémentaires doivent être codés n’est pas définie et il n’est donc pas utilisé), les 6 autres canaux sont utilisés dans les extensions comme le CD+G (permet l’insertion des paroles pour les karaokés) ou le CD-Text (nom des pistes, auteurs, interprètes).

La fréquence d’échantillonnage de 44,1 kHz est héritée d’une méthode de conversion numérique d’un signal audio en signal vidéo pour un enregistrement sur cassette vidéo qui était le seul support offrant une bande passante suffisante pour enregistrer la quantité de données nécessaire à un enregistrement audionumérique (en) PCM Adaptor. Cette technologie peut stocker 6 échantillons (3 par canal en stéréo) par ligne horizontale. Un signal vidéo NTSC possède 245 lignes utilisables par trame et 59,94 champs par seconde qui fonctionnent à 44 056 échantillons par seconde. De même, un signal vidéo PAL ou SECAM possède 294 lignes et 50 champs qui permet aussi de délivrer 44 100 échantillons par seconde. Ce système pouvait aussi stocker des échantillons de 14 bits avec des corrections d’erreur ou des échantillons de 16 bits sans correction d’erreur. Il y eut donc un long débat entre Philips et Sony concernant la fréquence et la résolution de l’échantillonnage. Philips voulant utiliser le 44 100 Hz utilisé en Europe et une résolution de 14 bits ayant déjà développé des CNA 14 bits et Sony voulant imposer le 44 056 Hz utilisé au Japon et États-Unis et une résolution de 16 bits.

Anecdote : c’est donc pour ceci que les premières platines CD étaient équipées de CNA 14 bits (les TDA1540), Philips ayant trouvé le moyen de les utiliser en 16 bits par un suréchantillonnage 4×, le CNA fonctionnait donc à 176,4 kHz au lieu de 44,1 kHz et était précédé d’un filtre numérique. Cette fréquence 4 fois plus élevée permettait d’avoir un filtre passe-bas avec une pente beaucoup plus progressive qu’avec les CNA concurrents. Le comportement dans les fréquences proches de 20 000 Hz était plus linéaire avec moins de rotation de phase et le son en était d’autant plus pur.

Capacité de stockage et vitesse

Les spécifications du disque compact recommandent une vitesse linéaire de 1,22 m/s et un pas entre les pistes de 1,59 µm. Cela conduit à un CD audio de 74 minutes sur un disque de 120 mm ou environ 650 Mio de données sur un CD-ROM.

Néanmoins, afin d’autoriser des variations dans la fabrication des supports, il y a une tolérance dans la densité des pistes. En fabriquant délibérément des disques de plus haute densité, on peut augmenter la capacité et rester très proche des spécifications du CD. En utilisant une vitesse linéaire de 1,1975 m/s et un pas entre les pistes de 1,497 µm, on atteint une nouvelle capacité maximale de 79 minutes et 40 secondes ou 702 Mio. Bien que ces disques possèdent une légère variation de fabrication, ils sont très souvent lus par les lecteurs et seul un très faible nombre de lecteurs les rejettent.

Il existe des disques enregistrables de 90 et 99 minutes, cela en augmentant la densité des pistes. Mais d’autres problèmes se présentent. Le premier est que la capacité maximale qu’un disque peut annoncer lui-même, en accord avec les spécifications du CD-R, est inférieure à 80 minutes. Le second est que les marqueurs de temps entre 90 et 99 minutes sur les disques sont normalement réservés pour indiquer au lecteur qu’il lit le début du disque et non la fin. Ces problèmes sont fonction des fabricants de disques, des graveurs et des logiciels de gravure. Cela signifie que les disques de plus de 80 minutes sont réservés à un marché de niche.

Une autre technique pour augmenter la capacité d’un disque est d’écrire dans le préambule et dans la fin du disque qui sont normalement prévus pour indiquer les limites du disque. Cela permet d’étendre la capacité d’une ou deux minutes, mais cela peut provoquer des problèmes de lecture quand la fin du disque est atteinte.

Aucun commentaire: